False Positives And False Negatives Analysis Essay

If you are not the author of this article and you wish to reproduce material from it in a third party non-RSC publication you must formally request permission using RightsLink. Go to our Instructions for using RightsLink page for details.

Authors contributing to RSC publications (journal articles, books or book chapters) do not need to formally request permission to reproduce material contained in this article provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    Reproduced from Ref. XX with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
  • For reproduction of material from PCCP:
    Reproduced from Ref. XX with permission from the PCCP Owner Societies.
  • For reproduction of material from PPS:
    Reproduced from Ref. XX with permission from the European Society for Photobiology, the European Photochemistry Association, and The Royal Society of Chemistry.
  • For reproduction of material from all other RSC journals and books:
    Reproduced from Ref. XX with permission from The Royal Society of Chemistry.

If the material has been adapted instead of reproduced from the original RSC publication "Reproduced from" can be substituted with "Adapted from".

In all cases the Ref. XX is the XXth reference in the list of references.

If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
  • For reproduction of material from PCCP:
    [Original citation] - Reproduced by permission of the PCCP Owner Societies
  • For reproduction of material from PPS:
    [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
  • For reproduction of material from all other RSC journals:
    [Original citation] - Reproduced by permission of The Royal Society of Chemistry

If you are the author of this article you still need to obtain permission to reproduce the whole article in a third party publication with the exception of reproduction of the whole article in a thesis or dissertation.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Multiple hypotheses testing is concerned with appropriately controlling the rate of false positives, false negatives or both when testing several hypotheses simultaneously. Nowadays, the common approach to testing multiple hypotheses calls for controlling the expected proportion of falsely rejected null hypotheses referred to as the false discovery rate (FDR) or suitable measures based on the positive false discovery rate (pFDR). In this paper, we consider the problem of determining levels that both false positives and false negatives can be controlled simultaneously. As our risk function, we use the expected value of the maximum between the proportions of false positives and false negatives, with the expectation being taken conditional on the event that at least one hypothesis is rejected and one is accepted, referred to as hybrid error rate (HER). We then develop, based on HER, an analog of p-value termed as h-value to test the individual hypotheses. The use of the new procedure is illustrated using the well-known public data set by Golub et al. [Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science 386 (1999) 531–537] with Affymetrix arrays of patients with acute lymphoic leukemia and acute myeloid leukemia.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *